20.1 $4-20 \cdot 15$ NASA Stuclent Leunch

Flight Readiness Revjew

Launch Vehicle and AGSE design and dimensions

(G) Lengtis: 79.25 in .
(o) Dianseters 4 is.
(T) Wejght 9.26 Jos
(G) Rover Dissensionss 22 is $x 20$ is x 22 is

Key clesign features of the launch vehicle

- LED Ifighting
- Magnetic latich mechanism
- Arming switich
- Closing mechanism

F Removable bulkhead mechanism for main chute

Motor clescription

- Full scale will use Cesaronil U555 red lightening

T Burs Tinses Bus
G Propellant Weight g6egg
(o) Total Jmpulse: $267.40 \mathrm{~J} \mathrm{~b}^{*} \mathrm{~s}$

G Average Thirust: 79.42 !o

Rocket flight stability in static margin diagram

(a) Center of Giravitys 54, 1941 is,
(o) Center of Pressure: 65.6\% js,
(o) Stabjlity Margju: 2.87 Cal

Launch thrust-to-weight ratio and rail exit velocity

To Thrust to Weight ratio is 7,35 . 1
OF Reill Esitit Velocity is $60.20 \mathrm{ft} / \mathrm{s}$

Mass statement

OTOEA Rocket subscale nass predjetion 750z (4.7le)
(T) Actual subscale nassu $10 \cdot \mathrm{~J} 0 \mathrm{~L}(6,8 \mathrm{~J} \mathrm{j}$)

(oper Rocket fujlscale nass prediction d39 oz (8,7 (b)
G Expected nass increase: 300z (1,9)

Parachute sizes and descent rates

	Mass: slugs	Decent Rate: ft/s	Total Energy: ft*lb	Parachute Size: in.
Drogue Decent 1	$\mathbf{0 . 3 4 7 8}$	48.88	$\mathbf{8 3 0 . 9 8}$	$\mathbf{2 2}$
Drogue Decent 2	$\mathbf{0 . 2 8 1 3}$	43.96	543.607	$\mathbf{2 2}$
Payload Decent	$\mathbf{0 . 0 6 6 5}$	$\mathbf{1 8 . 8 0}$	$\mathbf{2 3 . 5 0 3}$	$\mathbf{3 0}$
Main Decent	$\mathbf{0 . 2 8 1 3}$	$\mathbf{1 3 . 8 2}$	$\mathbf{5 3 . 7 2 6}$	$\mathbf{7 0}$

Kinetic energy ait key phases of the mission, especially at Jancling

- Sinetice energy deternined from previously found velocities,
- Drogle bejore payload ejections 27 कft
- Drogle after payload ejections $169,6 \mathrm{fit}$
- Weins kinetice energy : 37,9ft
(a) Ejected payload binetic energy : 2.12. lift

G Reall exit kinetic energy 84tioft

Predicted altitude of the Jaunch vehicle with a $5-$ - 10-, 15-, and 20 -rnph wind

Predicted drift from the launch pacd with a $5-$ - 10-, 15-, and 20-rnph wind

G Calculated using constant acceleration assunnption
(6) 5 mpos: 675.277 ft

Test plans and procedures

- Giround Testings test ignition charges through flight consputer, green indicator signals conitinuty
G Sinulations: test through vaculus
G Actual Launch
Oontined is CDR Section SAJ J

Full -scale flighit test

$$
\begin{aligned}
& \text { Appros AGL } \\
& \text { Yo2,700 it } \\
& \text { Appros, Jjas Velocjity } \\
& \text { Yo } 450 \text { fits }
\end{aligned}
$$

Recovery system tests

(a) Drogues 36 isı / Nains 76 ins / Drogues 28 iss,
(o) Kevlar recovery harnesses
(T) Descent rates
(a) Drogue bejore payload ejections ulfits
(a) Drogue after payloacl ejections 36it/s
(T) Maju clescent rejtes J/fits
(o) Ejected payload descent rateu $24 \mathrm{ft} / \mathrm{s}$ Rent extit velocity 7 l. $5 \mathrm{fit} / \mathrm{s}$

Summary of Reguirements Verification (Jaunch vehicle)

AJJ Requirements Wet

System must be less than $\$ 5000$ fair market value at time of flight

Rocket must reliably and accurately achieve apogee of 5280 ft

Reliably deploy quadrotor at safe working altitude of 500 ft
Stream telemetry, and video to ground station
Employ video and beacon tracking systems.

Quadrotor must have attitude control within 5 degrees of accuracy during normal operations

Quadrotor must have basic altitude control with 6 feet (2 meters) of accuracy during normal operations

Quadrotor must be able to hover for a minimum of ten minutes and operate for
45 minutes in a low power state (no power supplied to the propulsion system).

AGSE

AGSE/payload design and dimensions

Cherssis
Yo 22 is $\times 20$ is $x 22$ is
(G)Ectionjes Bos

Yo. 10 in x d 14 in x s 4 iss

AGSE/Payload integration

G Rotating Claw on ssoving anss
(T) Mounted Ceasseres
(o) Detect payload in clay

Interfaces with ground systems

(T) We'deans
(G) Seryos

T Motors
(a) Arodine
(Jotor/Servo Contiollers
G Low Powered PC notherboard

Summary of requirements verification (AGSE/payload)

\author{

- Power/Kill swith
}

G Start Button to start prograns

- Wifll run all stages autionomously

